
www.usn.no

FMH606 Master’s Thesis 2018
Industrial IT and Automation

Environmental Public Health Informaࢢon
Management System

Ola Anton Grytten

Faculty of Technology, Natural Sciences and Mariࢢme Sciences
Campus Porsgrunn

http://www.usn.no

www.usn.no

Course: FMH606 Master’s Thesis 2018
Title: Environmental Public Health Information Management System

Pages: 108
Keywords: MVC Core 2.0, Android, Azure, Database, API

Student: Ola Anton Grytten
Supervisor: Hans-Petter Halvorsen

External partner: Tel-Tek, Porsgrunn kommune, Sykehuset Telemark
Availability: Open

Summary:
This project was carried out to develop a website and an Android app to display different
pollutions in the Grenland area. The background for the project is increased focus on
environmental health and performing measures to improve the environment. The Android
app was mainly developed to allow push notifications, which eliminates the need for checking
the website to detect pollutions.

Both the website and the mobile app was implemented. The website was hosted at Microsoft
Azure. Push notifications worked as intended.

The website was developed by using the ASP.NET Core 2.0 Framework. The mobile app was
developed by using Xamarin.Android. Microsoft SQL Server was used as database storage.
An external API from NILU was used for gathering different types of air pollution data.

The University College of Southeast Norway accepts no responsibility for the results and
conclusions presented in this report.

http://www.usn.no

Preface

This master thesis is my final work of my master program Industrial IT and Automation
at The University College of South-Eastern Norway. I am grateful for all that I have
learned during this period, and for getting the chance to be a part of this exciting project.

I would like to thank my supervisor Hans-Petter Halvorsen for good guidance and feedback
during the project period. I would also like to thank Porsgrunn kommune, Tel-Tek,
Sykehuset Telemark and my co-supervisor Nils-Olav Skeie.

The resulting website can be found at:
https://environmentalpublichealth.azurewebsites.net/
An OneDrive folder containg relevant files can be found at:
https://1drv.ms/f/s!AreA9velRQIgib1ZK_jOYnlJ90SAsA

The reader is expected to have some knowledge about programming and database devel-
opment. However, much of the content in the report can be understood without this.

The task description can be found in appendix A.

Porsgrunn, 15th May 2018

Ola Anton Grytten

5

https://environmentalpublichealth.azurewebsites.net/
https://1drv.ms/f/s!AreA9velRQIgib1ZK_jOYnlJ90SAsA

6

Contents

Preface Ÿ

Contents Ŵų
List of Figures . 12
List of Tables . 13

Ŵ Introducࢢon Ŵź
1.1 Background . 17
1.2 Report Structure . 18

ŵ System Overview Ŵż
2.1 The need of an Information Management System 19
2.2 Existing Solutions . 20
2.3 System Description and Available Data . 21

2.3.1 Available Data - Grenland Area . 22

Ŷ Planned System Behavior ŵŶ
3.1 Requirements and Specifications . 23
3.2 Website - Planned Behavior . 24

3.2.1 User Log In and Registration . 24
3.2.2 Dashboard . 24
3.2.3 Trending . 25
3.2.4 Analytic . 25
3.2.5 Report Generation . 25
3.2.6 Administrative functionality . 26

3.3 Mobile App - Planned Behavior . 26
3.3.1 Dashboard . 26
3.3.2 Trending . 26
3.3.3 Push Notifications . 26
3.3.4 Register/Log in . 27

ŷ Technical Analysis ŵż
4.1 Needed Requirements . 29
4.2 Frameworks and programming languages 30

4.2.1 Web solution - Back-end . 30

7

Contents

4.2.2 Mobile App . 31
4.3 Database . 31
4.4 Website front-end tools . 32

4.4.1 Bootstrap . 32
4.4.2 Charting Library . 32

4.5 Back-End Tools and Services . 32
4.5.1 Pdf Generation . 32
4.5.2 Push notifications . 32

4.6 Hosting . 33
4.6.1 Private hosting . 34
4.6.2 External hosting . 34
4.6.3 Cost Estimation . 34

4.7 Scheduling . 35
4.8 Maintenance . 35
4.9 ASP.NET MVC - Theory and Example . 35

4.9.1 Example . 36

Ÿ Development: Methods and Design ŷŴ
5.1 Working Methods . 41
5.2 Frameworks, tools and services . 41

5.2.1 Database . 41
5.2.2 Website . 42
5.2.3 Mobile App . 42
5.2.4 Services . 42
5.2.5 Hosting . 42

5.3 Initial Software Design . 43

Ź Database - Implementaࢢon ŷŸ
6.1 Design . 45
6.2 Entity Framework . 47

6.2.1 LINQ . 47
6.2.2 Generating C# Models from Database 48

6.3 Views . 48

ź Website - Implementaࢢon ŷż
7.1 Server side - code patterns . 49
7.2 Interactions between server and clients . 50

7.2.1 Middleware . 53
7.3 Website . 54

7.3.1 Dashboard . 54
7.3.2 Trending . 54
7.3.3 Analytic . 54

8

Contents

7.3.4 Report Generation . 55

Ż Mobile App - Implementaࢢon Ÿź
8.1 Overview . 57
8.2 Communications with Server . 57

8.2.1 Authorization and Authentication 58
8.2.2 Push Notifications . 59

8.3 User Interface and functionality . 59
8.3.1 Plotting . 60

ż Services - Implementaࢢon ŹŴ
9.1 Overview . 61
9.2 Fetch External Data . 63

9.2.1 Working with JSON data . 65
9.3 Status Updates and Push Notifications . 66

9.3.1 Status updates . 67
9.3.2 Push Notifications . 67

9.4 Update Buffer Table . 69

Ŵų Results źŴ
10.1 Website . 71

10.1.1 Dashboard . 71
10.1.2 Trending . 75
10.1.3 Data Analytics . 77
10.1.4 Data Analytics - Compare Periods 78
10.1.5 Report Generation . 78

10.2 Mobile App . 79
10.2.1 Dashboard . 79
10.2.2 Trending . 80
10.2.3 Log In / Register new user . 81
10.2.4 Push Notifications . 82

10.3 Services . 83

ŴŴ Discussion ŻŸ
11.1 Website . 85
11.2 Mobile App . 86
11.3 Services and Database . 87

Ŵŵ Further Work Żż
12.1 Website . 89
12.2 Mobile App . 89
12.3 Services and Database . 89

9

Contents

ŴŶ Conclusion żŴ

Bibliography żŶ

A Project Task Descripࢢon żź

B Design Sketches żż

C Use Cases ŴųŴ

D Data Analyࢢcs - Compare Periods ŴųŶ

E Generated Report by the System ŴųŸ

10

List of Figures

2.1 System Description . 21

3.1 Planned functionality - Overview . 24

4.1 Decisions . 30
4.2 MVC block diagram . 36
4.3 Routing . 36
4.4 Model . 37
4.5 View . 38
4.6 Controller . 38
4.7 Layout . 39
4.8 Layout . 39

5.1 System overview . 43

6.1 Database - design . 46
6.2 Example - query the database using LINQ 47
6.3 Generating C# Models from the database 48

7.1 Data flow between server and clients . 50
7.2 Controller and addressing . 51
7.3 Dashboard Actions - Website . 51
7.4 Dashboard Action - Mobile App . 52
7.5 Data flow with function names . 52
7.6 Middleware default routing . 53
7.7 JWT Bearer . 53

8.1 Android App - Logic Overview . 58

9.1 Services Overview . 62
9.2 Azure Function . 63
9.3 Flow diagram for fetching external data 64
9.4 Json data from NILU’s API . 65
9.5 Converting JSON string to JSON Object 66
9.6 Flow diagram for updating statuses and sending push notifications 66
9.7 Firebase Cloud Messaging . 67

11

List of Figures

9.8 Sending data to FireBase Cloud Messaing 68
9.9 Updating buffer table . 69

10.1 Dashboard . 72
10.2 More details on dashboard . 73
10.3 Parameter description . 74
10.4 All parameter descriptions . 74
10.5 Trending . 75
10.6 Trending - more details . 76
10.7 Data analytic . 77
10.8 Report generation - setup . 78
10.9 Dashboard and navigation . 79
10.10Trending . 80
10.11Log in/register . 81
10.12Push notifications . 82
10.13Services running locally . 83

11.1 Report generation - detecting trending . 86

B.1 Website Dashboard . 99
B.2 Website Graph . 100
B.3 Mobile-App sketches . 100

C.1 Use case diagram from web site and mobile app 101
C.2 Mobile-App Use Cases . 102

D.1 Data analytic - compare periods . 104

12

List of Tables

4.1 Cost estimate using Azure Pay-As-You-Go subscription 34
4.2 Maintenance - hour usage . 35

13

14

Nomenclature

Symbol Explanation

IDE Integrated Development Environment
API Application Programming Interface
HTML HyperText Markup Language
JSON JavaScript Object Notation
CSS Cascading Style Sheets
RAD Rapid Application Development
FCM Firebase Cloud Messaging
PHP Hypertext Preprocessor
NILU Norwegian Institute for Air Research
HTTP Hypertext Transfer Protocol
SQL Structured Query Language
LINQ Language Integrated Query
IIS Internet Information Services
AXML Article XML Markup Language
XML eXtensible Markup Language

15

16

Ŵ Introducࢢon

This master thesis will be written as an answer to the project proposal ”Environmental
Public Health Information Management System” within the course ”FMH606-1 18V Mas-
ter‘s Thesis”, given by The University College of South-Eastern Norway. The project is
a collaboration between USN, Tel-Tek, Porsgrunn municipality and Telemark hospital-
Department of Occupational Medicine.

Ŵ.Ŵ Background

Government, companies and citizens have in later time increased their focus on environ-
mental health. There are many sources that expose the environment for different kinds
of emissions like air pollution, toxic released in water etc. Some may only affect local
environment, while other may affect the environment globally. How the emissions affect
the environmental can be a complex question. Wear and tear on car tire for example,
will release plastic as particulate matter into the air. This plastic can be inhaled while
breathing, or it may end up in the ocean and later end up into the food chain. Further-
more, green house gases, which are threatening to increase earth temperature, may not
be any immediately threat to the human and animal health, but it’s widely known that
they can cause global warming which may lead to climatic changes.

It is important for the government and companies to take measures for reducing emissions
both locally and globally. The decision makers, for instance the government, need to be
provided with good information regarding the topic. Citizens may also be interested
in everyday pollution in their local environment, which for example will be helpful for
asthmatic people who want to stay inside on days with problematic pollution levels. Today
there are a lot of environmental data available, but they are typically spread around on
different websites. By gathering available data into one solution, it would be easier to get
an overview and read the available data. Therefore, USN has collaborated with Tel-Tek,
Porsgrunn municipality and Telemark hospital-Department of Occupational Medicin to
develop a prototype to make environmental data publicly available at Grenland area.

17

1 Introduction

Ŵ.ŵ Report Structure

Chapter 2 gives a brief description about the system and available data.
Chapter 3 tells more about how the system is planned to behave.
Chapter 4 gives an overview of framework, tools and services that could be used.
Chapter 5 tells more about the development method used, and which frameworks, tools,
and services that are used.
Chapter 6 tells about how the database was implemented.
Chapter 7 tells more about the website implemented.
Chapter 8 tells more about the mobile app implementation.
Chapter 9 tells more about how the services is implemented and how data is gathered.
Chapter 10 show the result of the implementations.
Chapter 11 discusses the results.
Chapter 12 gives some suggestions for future work.
Chapter 13 gives the final conclusion.

18

ŵ System Overview

This chapter gives the reader an introduction about the need of an information manage-
ment system, an overview of existing systems and available emission and pollution data.
An overview of the system will be given.

ŵ.Ŵ The need of an Informaࢢon Management System

Focus on global warming and health gives increased focus on accessing environmental
data. The importance of performing measures to lower emissions strengthens the need of
relevant pollution data. Also, the public interest in health in peoples local areas would
benefit from getting live pollution data. For example, this is beneficial for asthmatic
people who should stay inside during the worst periods of air pollution.

Such a system might enlighten citizens that are not really aware of the effects that pollu-
tion might have on health and environment. People might see the benefits of taking public
transport instead of driving their own car, or staying inside during the worst periods.

Regarding Grenland, there are several large factories releasing emissions, which increases
the need of pollution measurements.

Furthermore, an information management system can expose other types of measured
data like temperature, number of cars passing, wind speed, wind direction etc. Such
information can be correlated to the amount of pollution, especially air pollution, and
can be used to see the bigger picture, like how the different factors may affect each
other.

19

2 System Overview

ŵ.ŵ Exisࢢng Soluࢢons

There are some existing websites that gives information about pollution. This section will
cover two of them.

• Luftkvalitet.info
• Norskeutslipp.no

Luftkvalitet.info is developed and maintained by NILU to give the public access to real
time monitoring of air pollution within different cities in Norway [1]. Air pollution is
given by measured values and a color code to indicate the health risk of air exposure.
The different color codes are explained with text where they are addressing different
population groups that possibly should stay inside. Asthmatic for example will tolerate
less air pollution than the rest of the population. There is some limited functionality for
accessing trending data for the different air pollution components. For the larger cities it
is possible to receive SMS notifications during the winter. [2]

Norskeutslipp.no offers emission data based on reports from the industry. Smaller emission
releases are not reported, but estimated based on activity data and emission factors. The
website offers functionality to narrow down emission based on location. There is not real
time monitoring as the emissions are reported at annual reports from the industry. [3]

20

2.3 System Description and Available Data

ŵ.Ŷ System Descripࢢon and Available Data

The system is built up around 4 different components, which is illustrated in figure 2.1.
The website and the mobile app are displaying all data within the system. The pollutions
within the system are air pollution gathered from NILIs API, which is covered in section
2.3.1. One of the main concept is to generate status for the sources, for example indicates
how much the current air pollution is by text and color. The changes will trigger the
system to send out push notifications to any users that are subscribing on these through
the mobile app.

Both the website and the mobile app consists of a main page intended to be used as a
dashboard, were the most important data is displayed. The dashboard on the website is
organized by showing the last day historical data in addition to information about the
statuses within the system. The mobile app dashboard shows all the status, but only the
last measured values, not the last day historical data.

Furthermore, the website and mobile app contain functionalities for getting more details
and show trending data for the last month. Moreover, the website provide additional
functionalities for data analytics and report generations.

Figure 2.1: System Description

21

2 System Overview

ŵ.Ŷ.Ŵ Available Data - Grenland Area

NULI is a service which measure air pollution on different locations in Norway. The
measurements happen automatically and are available to third parties through an API,
which gives access to four different stations in the Grenland area [4].

• Sverresgate - Porsgrunn
• Lensmannsdalen - Skien
• Furulund - Brevik
• Haukenes - Skien

The stations currently measure five different components:

• NO2
NO2 is the short term for Nitrogen Dioxide, and belongs to a group of reactive
gases known as oxides of nitrogen oxides (NOx). The primary sources of this gas
are emission from cars, trucks, buses or engines that burn fuel. [5]

• PM10
PM10 is the short term of particulate matter, which indicates the particle size of
an air pollutant. Particles emitted into the atmosphere will eventually be taken
down by the gravity or rain. Larger particles will quickly be taken out from the
atmosphere. However, finer particles will stay in the atmosphere for a longer time
and can be transported over longer distances.
The size is defined as the fraction particles with an aerodynamic diameter smaller
then the given size, which for PM10 is 10 µm. [6]

• PM2.5
PM2.5 is the same as PM10, but with smaller particle matter size, which is 2.5 µm.
[6]

• O3
O3, the short term for Ozone, is the most important photo chemical oxidant in
the troposphere, where it filters dangerous light from the sun. Because of photo
chemical reactions with NOx gases, the concentrations of ozone are often lower in
urban centres and higher in suburban areas. [7]

• CO2
CO2, the short therm of Carbon dioxide, is a common and naturally gas. CO2 has
an important role for life on earth, as humans and animals exhale it while plants
absorb it in order to grow. CO2 is a naturally greenhouse gas because it traps
energy from the sun in the atmosphere. However, emission of this gas from human
activity may increase the greenhouse effect. The main emission source comes from
engines that burn fuel. [8]

22

Ŷ Planned System Behavior

The content of this chapter will explain more about system requirements, specifications
and planned behavior.

Ŷ.Ŵ Requirements and Specificaࢢons

A website should be able to give the users a quick overview of different sources and give
a short indication of the current values and the condition of the data. The home page
should contain a dashboard giving a graphical presentation of the most important data.
By logging in and further investigating the data, it should be possible to get a graphical
presentation of the data by time, which could be for days, weeks and years. It should be
possible to compare data from different time periods, for example compare the present
year with previous years etc.

Further, the website should be able to generate reports based on the gathered data, but
this functionality should not be available to ordinary users.

The data should also be available through a Mobile-App which should feature most of
the same possibilities as the website when it comes to user functionality. In addition, it
should also be possible to generate push notifications if the data goes over or under a
specific limit. The users should be able to choose to subscribe on the sources they want
to receive push notifications for.

The system should be able to create services that will let the sensor system send data to
the system. It should be possible to generate services that will collect data from external
data sources which could be presented in the system.

Finally, it should be easy to install the system on a server, and move it between servers.

23

3 Planned System Behavior

Ŷ.ŵ Website - Planned Behavior

A plan for the behavior of the website is made based on the requirements and specifications
given in section 3.1. A navigation bar should be present on the top of the page for easy
access to all its functionally. Figure 3.1 shows an overview of the planned functionality.
The section below will explain different web pages which is planned.

Figure 3.1: Planned functionality - Overview

Ŷ.ŵ.Ŵ User Log In and Registraࢢon

Some of the website’s functions are more resource demanding, like for example analytic
investigation and report generation. Users are required to log in to get access to these
features. In this way it is easier to restrict or limit their usage, in case of shortage in
server resources.

Ŷ.ŵ.ŵ Dashboard

The dashboard web page will act as the home page of the website. The most import-
ant functionality is to give the user a quick overview of the measured parameters and
associated statuses. The most important sources should be graphically represented by
plotting historical data from the last day. Logged in users should be able to make per-
sonal configurations for the most important sources on the dashboard. In addition, all

24

3.2 Website - Planned Behavior

the sources should also be represented in a map for easy location. Furthermore, a table
should contain more details about the sources and their measured parameters should be
presented at the bottom of the page.

The status for each parameter will be illustrated by a color and a text indicating the
severity. The status of a source will be equal to the highest parameter severity associated
to the source.

Ŷ.ŵ.Ŷ Trending

A web page should provide more details about the sources within the system. When the
user selects a source the web page should return details and corresponding parameters,
where the last historical data should be plotted to detected recently trendings. Moreover,
options for fixed time intervals should be available, like for example last day or last week.
Each parameter should also have their status limits specified. Further, data from external
sources may come with a license for usage, so the web page must be able to inform the
users about any potential licenses.

Ŷ.ŵ.ŷ Analyࢢc

A web page should give the user the ability to investigate sources and parameters more in
depth. The most important concept is to compare parameters against other parameters
and detecting trends. In term of air pollution it might be possible to determine if any
area is more problematic then other areas, and perform measures to, for instance, lower
air pollution. It should also be possible to compare periods of the same parameters by
plotting them side by side. This way, it is easier to determine if any period stands out
as problematic or good. Moreover, a logged in user should be able to save the setup for
selected parameters. This would be an advantage if an user continuously is investigating
the same sources.

If choosing a long time period, there might be to many measurements which make the plot
unreadable. Therefore, it should be possible to scale the data, which means combining
measurements within a time period into only one measurement.

Ŷ.ŵ.Ÿ Report Generaࢢon

It should be possible to generate reports in a pdf format, which should include some of the
same data as the analytic functionality provides. These reports are intended to be used
as a basis for decision making. An example could be to perform measures and actions for

25

3 Planned System Behavior

improving air quality. Like the analytic web page, logged in users should be able to save
the setup for later use.

Ŷ.ŵ.Ź Administraࢢve funcࢢonality

The system should be dynamically. This means that administrative users should be able
to add sources to the system by logging into an administrative page. It should also be
possible to edit sources in the system.

Ŷ.Ŷ Mobile App - Planned Behavior

The mobile app will share some of the functionalities as the website, except analytic
investigation and report generation. In addition, it should receive push notifications if
status changes happens. Moreover, the user should be able to choose which sources he/she
wants to subscribe on. Due to this, the user must be logged in to be allowed to use the
app functionalities.

Ŷ.Ŷ.Ŵ Dashboard

Like the website, the mobile dashboard should give the user a quick overview of the
measured parameters and associated statuses. However, it will contain fewer details, like
plotting, due to smaller screen size.

Ŷ.Ŷ.ŵ Trending

The mobile trending page should have the same functionalities as the web page.

Ŷ.Ŷ.Ŷ Push Noࢢficaࢢons

A mobile app is ideal for receiving push notifications on the go. The users should be able
to subscribe on push notifications for each source they feel is relevant for them. The user
should also be able to disable push notifications at configurable time intervals, typically
at night.

26

3.3 Mobile App - Planned Behavior

Ŷ.Ŷ.ŷ Register/Log in

It should be possible to register new user directly from the app. There should be no
system administrative functions on the mobile app.

27

28

ŷ Technical Analysis

This chapter will mainly cover topics regarding requirements for different tools, framework
and hardware, and which of them that might be best suited to be used in the solution.

ŷ.Ŵ Needed Requirements

The functionality given in chapter 3 will give the base line of what the system should
do. The functionality can be divided into three independent sections, which use the same
database.

• Website front and back-end
Typically using a server side framework which generates HTML/JavaScript web
pages populated with data from a database.

• Services
Typically background related tasks. Based on the desired functionality this would
include fetching external data and sending push notifications as it is not directly
tied to the website. However, it would use the same database.

• Mobile App
Independent from website-front end and services, but need access to the same data-
base. The mobile app can access data through APIs on the server.

A decision diagram was made to illustrate the most important decisions regarding frame-
works, tools and services, which can be seen in figure 4.1.

29

4 Technical Analysis

Figure 4.1: Decisions

ŷ.ŵ Frameworks and programming languages

Finding the best frameworks and programming language is an important decision, and it
often comes down to previous experience.

ŷ.ŵ.Ŵ Web soluࢢon - Back-end

Considering suggestions and previous experience, there were mainly three frameworks
alternatives for web development, all of them capable.

• ASP.NET
• ASP.NET Core
• PHP

The main difference between ASP.NET and ASP.NET Core is that the core version is an
open source, cross platform implementation of the .NET framework, which can run on
windows, Linux and macOS. ASP.NET can only run on windows[9].

PHP is a popular open source general-scripting language mainly used for developing
websites. [10][11].

30

4.3 Database

ŷ.ŵ.ŵ Mobile App

There are two main smart phone operation systems, which is iOS and Android. There
are many framework alternatives for mobile app development, where three of them are
listed as alternatives for this thesis.

• Android Studio
• Xcode
• Xamarin

Android Studio is the official IDE for android apps, which supports programming lan-
guages like java and C++, where Java is the most used and most supported language.
[12]

Apple offers Xcode IDE for iOS app development, and supports both switch and objective-
C[13].

Xamarin, the third option, is no official IDE or framework, but instead targets both
iOS and Android. I can build native apps supporting multiple platforms with a shared
codebase written in C#. [14]

ŷ.Ŷ Database

There are many options for database storage, but based on suggestions and previous
experience there were two alternatives, both of them suitable.

Microso[SQL Server

Microsoft SQL server is a well used database technology made by Microsoft. However, it
is not an open source, but Microsoft has recently made it available for Linux OS. [15]

MySql

MySql database is an open source database technology made by Oracle. [16]

31

4 Technical Analysis

ŷ.ŷ Website front-end tools

ŷ.ŷ.Ŵ Bootstrap

Bootstrap is a HTML, JavaScript and CSS library made by twitter, which comes with
predefined design for creating websites. It also scales the content related to screen size,
which is an great advantage when browsing the website from a smart phone. Furthermore,
Bootstrap allows less time spent on design development, and more time on the website
functionality itself.

ŷ.ŷ.ŵ Charࢢng Library

Typically, charting library for web application uses JavaScript to draw charts. There
are many alternatives which might be suitable. It is important that any charting library
supports formatting of the date axis in order to get the date correctly scaled.

ChartJs is an open source JavaScript charting library released under the MIT license [17].
It offer different kinds of charts like line, bar, scatter charts etc. [18]

Google Chart, an other option, is a free charting library made by Google. It offer support
for line, bar, pie chart etc. [19]

ŷ.Ÿ Back-End Tools and Services

ŷ.Ÿ.Ŵ Pdf Generaࢢon

There are many options for generating pdf files. Rotativa is one option, which convert
HTML and JavaScript to pdf files [20]. There is also an online version of Rotativa which
generates pdf files through APIs using HTTP requests, but this requires paid subscription
[21].

ŷ.Ÿ.ŵ Push noࢢficaࢢons

Push notification library needs to be supported in both the framework for the server and
for the mobile-app framework. There are many factors to take into account. Does the
notification appear if the the app runs in the background, or does the app need to be
open in order to get notifications? How much data will it consume? How much delay
could be tolerated?

32

4.6 Hosting

It should be possible to dynamically create notification services for data sources were
users can choose to subscribe on relevant data sources.

Another important concept is the that it must be supported on both Android and iOS.
If the Xamarin framework seems to work properly it should work on both platforms. If
using Android Studio to develop an Android app, it is important that the library also is
supported in an iOS development framework in case of expanding.

Firebase Cloud Messaging - FCM

Firebase Cloud Messaging is a service made by Google which can be used to send out
push notifications. It supports both Android and iOS which makes it suitable for cross
platform development. [22]

Apple Push Noࢢficaࢢon Service - APNs

Apple Push Notification Service features push notification to iOS devices. It offers no
support for cross platform push notifications. [23]

Azure Noࢢficaࢢon Hubs

Azure Notification Hubs is an service which allows cross platform notifications to be sent
out using just one API call. Azure subscription is required in order to use this service.
However, a free Azure subscription include 1 million free push notifications. Using Azure
Notification Hubs will give an advantage if developing cross platform apps. [24]

PushSharp

PushCharp is a library that will send push notifications through FMC and APNs. The
App need to be registered within the FMC and APNs services in order to work. It is
written in C# and can be used with the asp.net framework. This library is released
under the Apache License version 2.0 [25] [26]

ŷ.Ź Hosࢢng

For hosting there are two alternatives, either rent an external server or host the system
on a private server. Both Porsgrunn municipality and USN have servers that might be
alternatives.

33

4 Technical Analysis

ŷ.Ź.Ŵ Private hosࢢng

Both Windows and Linux can host web solutions given that the frameworks support the
operation systems.

Regarding ASP.NET Core 2.0 it can be hosted on both Windows and Linux [27] [28].

ŷ.Ź.ŵ External hosࢢng

There are many companies that offers rental servers. One alternative is Microsoft Azure
which offers both website hosting and functionality for background service.

ŷ.Ź.Ŷ Cost Esࢢmaࢢon

Costs depend on the server usage that the solution might require. There will be different
costs regarding private and external hosting. Choosing private hosting might require some
investment costs both on hardware and internet access.

Moreover, an cost estimate was made choosing Microsoft Azure as external hosting service
[29]. Pay-As-You-Go subscription was chosen using the cheapest alternative [30]. Table
4.1 shows the cost estimate.

Azure hosting cost(NOK) Year 1 Year 2 Year 3 Year 4 Year 5 Total
Azure functions 0 0 0 0 0 0
Web App 929 929 929 929 929 4643
SQL database 1437 1437 1437 1437 1437 7183
Custom domain 97 97 97 97 97 486
Total 2462 2462 2462 2462 2462 12312

Table 4.1: Cost estimate using Azure Pay-As-You-Go subscription

The cost estimate is clearly manageable, costing around 2500 NOK each year. Further-
more, if the solution needs more resources, it is possible to scale up the resources available
by choosing a different subscription. It will increase the costs, but comes as a result of
increased usage, which could defend spending more money.

34

4.7 Scheduling

ŷ.ź Scheduling

Scheduling is important as the solution needs some kind of services running in the back-
ground. The services must be able to perform tasks at known intervals. Regarding private
hosting, both Windows and Linux are able to run services in the background given that
the framework is supported.

If choosing an external hosting service it is important that background tasks can be
performed and run the desired code.

ŷ.Ż Maintenance

Estimating the amount of hours that might be used on maintenance and improvement
may be difficult. Unknown bugs might occur, or most likely occur, after commissioning.
Changes in external data that the system depends on may also lead to maintenance need.
An inaccurate estimation was made taking into account both maintenance and the need
of some minor improvements. The estimate can be seen in table 4.2.

Hour usage Year 1 Year 2 Year 3 Year 4 Year 5 Total
Maintenance 60 30 30 30 30 180
Improvement 50 0 0 0 0 50

230

Table 4.2: Maintenance - hour usage

ŷ.ż ASP.NET MVC - Theory and Example

MVC is an architecture that separates an application into three components, which is
model, view and controller. The model handles the logic for the applications, the view
handles the UI and the controller handles user interactions. Requests will be handled by
a routing component which will direct the request to the desired controller and action. A
great advantage of the architecture is the loose coupling between the three components.
Due to this, it is possible to develop each component more or less separately. Moreover,
this also makes testing of the application easier. [31]

Figure 4.2 shows the flow in an MVC application. When a browser requests a page, the
routing component will direct the traffic to the correct controller, which then will return
a view containing HTML/JavaScript code and model data.

35

4 Technical Analysis

Figure 4.2: MVC block diagram

ŷ.ż.Ŵ Example

This section covers a basic MVC example. The web page will return a view populated
with some simple user data. Figure 4.3 shows the routing class which will route the traffic
to desired controller. It also defines the default controller if no one is selected, which in
this case is the home controller.

The example was created as an empty MVC project with the ASP.NET framework and
uses bootstrap as styling.

1 pub l i c c l a s s RouteConfig
2 {
3 pub l i c s t a t i c void Reg i s terRoutes (RouteCo l l ec t ion route s)
4 {
5 route s . IgnoreRoute (”{ r e sou r c e } . axd/{∗ pathInfo }”) ;
6

7 route s . MapRoute (
8 name : ” Defau l t ” ,
9 u r l : ”{ c o n t r o l l e r }/{ ac t i on }/{ id }” ,

10 d e f a u l t s : new { c o n t r o l l e r = ”Home” , ac t i on = ” Index ” , id =
UrlParameter . Optional }

11) ;
12 }
13 }

Figure 4.3: Routing

36

4.9 ASP.NET MVC - Theory and Example

Figure 4.4 shows the model which will generate names and age using a for loop in the
constructor. If the names were to be fetched from a database it should happen in the
model. However, they could also be fetched in the controller, but that may reduce the
readability of the code.

1 pub l i c c l a s s User
2 {
3 pub l i c s t r i n g name { get ; s e t ; }
4 pub l i c s t r i n g age { get ; s e t ; }
5 pub l i c User (s t r i n g name_, s t r i n g age_)
6 {
7 name = name_ ;
8 age = age_ ;
9 }

10 }
11

12 pub l i c c l a s s Users
13 {
14 pub l i c L i s t <User> use r s = new List <User >() ;
15 Users ()
16 {
17 f o r (i n t i = 0 ; i < 5 ; i++)
18 {
19 User user = new User (”Name” + i . ToString () , i . ToString ()) ;
20 use r s . Add(user) ;
21 }
22 }
23 }

Figure 4.4: Model

37

4 Technical Analysis

The view is shown in Figure 4.5. The razor engine, which enables C# inside the view,
will populate a table containing all the user names and age. No server code is executed
on the client. The client will only receive the generated HTML code.

1 @model reportExample . Models . Users
2 <tab l e c l a s s=” tab l e tab le−hover tab le−condensed co l−md−12”>
3 <thead>
4 <tr>
5 <th>Name</th>
6 <th>Age</th>
7 </tr>
8 </thead>
9 @foreach (var item in Model . u s e r s)

10 {
11 <tr>
12 <td>@item . name</td>
13 <td>@item . age</td>
14 </tr>
15 }
16 </table >

Figure 4.5: View

Figure 4.6 shows the home controller. In this example, it will create a new model of the
type Users and return it with the view.

1 pub l i c c l a s s HomeController : Co n t r o l l e r
2 {
3 // GET: Home
4 pub l i c Act ionResult Index ()
5 {
6 Users u s e r s = new Users () ;
7 re turn View (us e r s) ;
8 }
9 }

Figure 4.6: Controller

38

4.9 ASP.NET MVC - Theory and Example

The layout of the page is placed in a separate file. When creating a view it is possible
to set the layout instead of write the whole layout into the view. The layout is shown in
figure 4.7 and contains the code line ”@RenderBody()”, which is where the view will be
inserted. For readability most of the HTML code drawing the layout is removed.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 </head>
5 <body>
6 @RenderBody ()
7

8 </body>
9 </html>

Figure 4.7: Layout

Figure 4.8 shows the result when running the application. The view and layout are marked
in the figure.

Figure 4.8: Layout

39

40

Ÿ Development: Methods and Design

This chapter will give the reader an overview of working methods to achieve the desired
functionality given in chapter 3. Framework, tools and services will be chosen based on
the analysis in chapter 4.

Ÿ.Ŵ Working Methods

There are many approaches for developing a piece of software. Unified process is one of
them, which focuses more on designing the software before it is written. By collecting
functional requirements based on software specifications and requirements, it is possible
to divide the software into pieces. These functional requirements will then be iterated
through, where the software mostly will be designed before it is written. However, this
requires more experience and knowledge about how to write the software in advance. In-
stead, RAD was chosen as working method as it does not focus as much on pre-design
of the software, but more on fast prototype development. Then the customer can give
feedback on the prototype, which then will be used for further development. The soft-
ware prototype will be improved rapidly by iterating through the stages from design to
prototype. [32]

Ÿ.ŵ Frameworks, tools and services

Frameworks, tools and services will be chosen based on the analyses in chapter 4. Open
source, cross platform and previous experience laid the basis of the decisions.

Ÿ.ŵ.Ŵ Database

Microsoft SQL Server was chosen as database for the project due to previous experience.
As Microsoft SQL Server now supports Linux in addition to Windows, the database can
be hosted on a Linux server [15].

41

5 Development: Methods and Design

Ÿ.ŵ.ŵ Website

It was decided to use ASP.NET Core 2.0 MVC for website development due to previous
experience programming in C#. MVC architecture itself also clearly separates code logic,
which makes it more suitable for readability and maintenance. Visual Studio 2017 was
chosen as IDE. Libraries are installed using the NuGet Package Manager [33].

The front-end tools in the context of web site means HTML, JavaScript and CSS libraries.
Bootstrap was decided to be used for web site design as it is widely used and intuitive
[34].

Chart.js was chosen as charting library for the web site as it seems intuitive and elegant in
use [18]. Moreover for generating reports it was decided to use Google Charts for plotting
[19].

Ÿ.ŵ.Ŷ Mobile App

Due to work load and access to hardware it was decided to only implement an app for
Android. Xamarin.Android was chosen as framework using Visual Studio 2017 as IDE
[35].

Ÿ.ŵ.ŷ Services

The services should use the open source and cross platform .NET Core implementation
of the .NET framework [36]. Then it is possible to target both Windows and Linux as
Server.

FCM was chosen as service for sending push notifications. [37].

Ÿ.ŵ.Ÿ Hosࢢng

Azure Cloud Hosting was chosen to host the solution for development and testing [29].
However, cross platform is emphasized, so it should be possible to host on different plat-
forms.

42

5.3 Initial Software Design

Ÿ.Ŷ Iniࢢal So[ware Design

Some general use cases and sketches was initially made to act as base for the software
design. As mentioned in section 5.1 RAP was chosen as working methods for software
development, and the software will therefore be continuously improved as the customer
gives feedback.

Figure 5.1 shows a detailed overview of how the different parts is planned to interact with
each others. Interactions between the server and the mobile app should happen using the
HTTP protocol.

Some early sketches were made to give a brief indication on how the website and mobile
app might look like. These can be seen in Appendix B. The use cases can be seen in
Appendix C

Figure 5.1: System overview

43

44

Ź Database - Implementaࢢon

This chapter will cover design and implementation of the database.

Ź.Ŵ Design

The database design was made using erwin Data Modeler [38]. The implementation can
be seen in figure 6.1. The tables can roughly be divided into five groups with different
responsibilities:

• User information
• Source and parameter information
• Status information
• Push notification configurations
• API configurations

The table USERS holds information about the users like for example email addresses,
user names and passwords. The password is hashed with a random salt value. In order
to authenticate users, the salt value needs to be stored in the database, which is done in
the column UserGuid. Furthermore, any user configuration is related to the USERS table
through the table USERCONFIG. Also, in order to limit or grant user access to different
functionalities, the USERS table is related to a table called USERROLES, which relates
roles to an specific user by the roles stored in the table ROLE.

The actual storage of any sources within the system happens in the table DATASOURCE.
It stores information like names, descriptions, areas, positions etc. In order to give a source
a location inside a geographical area, the tables AREALEVEL1 and AREALEVEL2 were
made. For example Grenland area will be stored in AREALEVEL1 and Porsgrunn in
AREALEVEL2. This will make the locations of the sources easier to understand. A
source can have many parameters, which is stored in the PARAMETER table. All the
measurements related to the parameters are stored in the table MEASUREMENTS. In
addition the table MEASUREMENTSBUFFER was made to allow increased loading
speed. PARAMETERTYPE indicates the type of the parameter, for example NO2 with
corresponding description.

45

6 Database - Implementation

Figure 6.1: Database - design

Each source and parameter has a corresponding status containing information about
the health of the last measurement, which is stored in the table PARAMINTERVAL-
STATUS. For example, a status can indicate medium air pollution by text and color.
The PARAMINTERVALSTATUS must be grouped together, which is done by the table
PARAMINTERVALGROUP. For instance, all statuses about NO2 should be grouped
together. The actual status limit are stored in the table PARAMINTERVAL, and each
parameter has their own status limit regardless of the parameter type. This might lead
to redundant information in the database and could be solved differently. The idea be-
hind is that parameters of the same type do not necessarily have the same status limits.
Describing number of cars passing on a stretch of road, for instance, might be different
depending on the car volume the road is designed for.

To be able to implement push notifications, the database needs to store the device token
which is related to a user. Through the table USERCONFIG, users are related to the
USERPUSHCONFIG table, which holds configurations regarding push notifications. The
actual subscriptions happen in the PUSHSUBSCRIBE table, where it will bind the sub-
scription to a source.

46

6.2 Entity Framework

The table APISERVICE stores any information regarding collecting data from external
APIs. APICONFIGTIMECON is a configuration table which enables the API queries to
be updated with dynamically changing date time fields.

Ź.ŵ Enࢢty Framework

Entity Framework was chosen in order to work with the database using .NET objects.
[39]

Ź.ŵ.Ŵ LINQ

LINQ was used to query the database. One of the advantage with LINQ is that most the
code is written in one solution, which makes it easier to perform maintenance. Figure
6.2 shows an example were the database is asked to return all sources and associated
parameters.

1 us ing (var db = new DbContext ())
2 {
3 var qryResult = (from a1 in db . Area l eve l 1
4 j o i n a2 in db . Area l eve l 2
5 on a1 . AreaLevel1Id equa l s a2 . AreaLevel1Id
6 j o i n d in db . Datasource
7 on a2 . AreaLevel2Id equa l s d . AreaLevel2Id
8 s e l e c t new
9 {

10 areaLeve l1 = a1 . Area ,
11 areaLeve l2 = a2 . Area ,
12 area = d . AccurateArea ,
13 d .Name,
14 d . DataSourceId ,
15 parameters = (from p in db . Parameter
16 where p . DataSourceId ==

d . DataSourceId
17 s e l e c t new
18 {
19 p . ParameterId ,
20 p . ParameterName
21 })
22 }) ;
23 }

Figure 6.2: Example - query the database using LINQ

47

6 Database - Implementation

Ź.ŵ.ŵ Generaࢢng C# Models from Database

All tables in the database must be known by the entity framework in order to use LINQ.
This is done by creating classes of all the tables, which could be done manually or auto-
matically using a script. Figure 6.3 shows how this is done by running a script using the
Nuget Package Managar Console.

Figure 6.3: Generating C# Models from the database

Ź.Ŷ Views

Four views are created in order to make the LINQ queries easier to perform. For example,
one view will group together data from the tables DATASOURCE, AREALEVEL1 and
AREALEVEL2.

48

ź Website - Implementaࢢon

This chapter will cover topics regarding design of software both on server and the website.
It will not cover the code itself in depth, but give a overview of how the system works,
like important functions calls and interaction between server and clients.

As explained in chapter 4, the website front-end and back-end use the ASP.NET MVC
Core 2.0 framework. These are therefore both explained in this chapter. The mobile app
also depends on data from the server, but will be explained more in detail in chapter 8.
Only the communication between server and mobile app will be covered in this chapter
as it doesn’t require detailed knowledge about how the mobile app is implemented.

ź.Ŵ Server side - code pa�erns

Code design is important, both for readability and maintenance. Therefore the code was
divided into different sections with different responsibilities.

• Controller
The controller’s responsibilities is mainly to read and send data between the system
and the users. No logic should be handled in the controller.

• Model logic
The model will handle all the business logic and containing class definitions of all
the data in the system. If the UI somehow were to be changed it is possible to reuse
the model logic.

• Database logic
This section will only handle communication back and forth between the database
and the program. The model logic will not directly query the database for data,
but instead ask the database logic, which then will fetch the data. If the database
were to be replaced the model logic also can be reused.

These sections can be seen in figure 7.1 indicating the data flow on the server. In terms of
MVC, it can be said that the model logic and the database logic belongs to M - Model.

MVC return views containing HTML and JavaScript code populated with model data.
However, it is possible to only return the model data without views which makes it possible

49

7 Website - Implementation

to reuse code for both the website and the mobile app. This was in focus when developing
the code.

Figure 7.1: Data flow between server and clients

ź.ŵ Interacࢢons between server and clients

The controllers, which interact with the clients, are divided into two groups, one for the
website and one for the mobile app. The main difference is that the controllers for the
website return views containing model data, while the controllers for the mobile app only
return model data as JSON. The controllers have methods called actions, and the routing
mechanism is set up with controller names and action names. Figure 7.2 was made to
illustrate what happens when typing addresses in the web browser. Listing 7.3 shows the
action method which is called that will return a view containing model data. The concept
of separating controller and model logic can clearly be seen as the action will get model
data from the model logic.

50

7.2 Interactions between server and clients

Figure 7.2: Controller and addressing

1 [AllowAnonymous]
2 pub l i c c l a s s HomeController : Co n t r o l l e r
3 {
4 [HttpGet]
5 pub l i c Act ionResult Dashboard ()
6 {
7 DashboardContainerView modelData = new DashboardContainerView ()

;
8 modelData . Dashboard = HomeLogic . GetDashBoard (true ,

ConstantConf igurat ions . GetchartJsStr ingFormat ()) ;
9 i f (modelData . Dashboard . e r r o r . e r r o r)

10 {
11 // Handle e r r o r
12 }
13 re turn View (modelData) ;
14 }
15 }

Figure 7.3: Dashboard Actions - Website

Listing 7.4 show how the dashboard data is returned as JSON data instead of view
containing data.

Figure 7.5 was made to show the data flow between the different code layers both for the
website and the mobile app. The controllers will ask the model logic data, which then
again will ask the database logic for data stored in the database.

51

7 Website - Implementation

1 [Route (” api / [c o n t r o l l e r] / [a c t i on] ”)]
2 pub l i c c l a s s HomeMobileController : Co n t r o l l e r
3 {
4 [HttpGet]
5 pub l i c JsonResult Dashboard ()
6 {
7 DashboardContainerViewMobile modelData = new

DashboardContainerViewMobile () ;
8 modelData . Dashboard = HomeLogic . GetDashBoard (f a l s e ,

ConstantConf igurat ions . GetAndroidChartStringFormat ()) ;
9 i f (modelData . Dashboard . e r r o r . e r r o r)

10 {
11 // Handle e r r o r
12 }
13 re turn Json (modelData) ;
14 }
15 }

Figure 7.4: Dashboard Action - Mobile App

Figure 7.5: Data flow with function names

52

7.2 Interactions between server and clients

ź.ŵ.Ŵ Middleware

A middleware is used to handle requests and responses [40]. Default routing and author-
ization check is handled in the middleware. Listing 7.6 shows how the default routing is
added, where the main page is the dashboard page.

1

2 app . UseMvc(route s =>
3 {
4 route s . MapRoute (
5 name : ” d e f a u l t ” ,
6 template : ”{ c o n t r o l l e r=Home}/{ ac t i on=Dashboard }/{ id ?} ”) ;
7 }) ;

Figure 7.6: Middleware default routing

Authorization information is saved in cookies on the client. However, this not practical
when authorizing requests from mobile apps. Therefore JWT bearer authentication and
authorization was implemented for requests from the mobile app[41]. This means the JWT
token must be sent with each request. To be able to use two authorization methods, a
custom authorize filter was made[42]. Figure 7.7 shows the custom filter. If the controller
name contain ”Mobile”, JTW bearer authorization will be used. The default is cookie
based authorization.

1 pub l i c c l a s s AddAuthor i zeF i l t e r sContro l l e rConvent ion :
IContro l lerModelConvent ion

2 {
3 pub l i c void Apply (Contro l l erModel c o n t r o l l e r)
4 {
5 i f (c o n t r o l l e r . ControllerName . Contains (” Mobile ”))
6 {
7 c o n t r o l l e r . F i l t e r s . Add(new A u t h o r i z e F i l t e r (” a p i p o l i c y ”)) ;
8 }
9 e l s e

10 {
11 c o n t r o l l e r . F i l t e r s . Add(new A u t h o r i z e F i l t e r (” d e f a u l t p o l i c y ”)

) ;
12 }
13 }
14 }

Figure 7.7: JWT Bearer

53

7 Website - Implementation

ź.Ŷ Website

This section will mostly focus on how the website is built based on model data, HTML
and JavaScript. Bootstrap is used for designing the layout of the website. There are four
main pages containing the most important functionalities.

• Dashboard.
• Trending.
• Analytic.
• Report Generation.

ź.Ŷ.Ŵ Dashboard

The dashboard contains multiple plots for each source. The razor engine is used to
generate HTML and JavaScript code for each plot, which happens inside a loop iterating
through the model containing all sources and associated parameters. The razor engine
will give all HTML elements an id which is used by the corresponding JavaScript code.
This is done by incrementing an integer for each iteration. This integer is used at the
end of the id tags for generating both HTML elements and JavaScript variables. When
generating the table razor engine will iterate through the sources and add them as rows.
This tables contains all the parameters within the sources. These parameters are clickable
in order show the parameter description inside a pop up, The parameter deceptions are
not initially loaded, but loaded on click using Ajax requests [43].

ź.Ŷ.ŵ Trending

In difference to the dashboard page, the trending page contain one large plot, which is
by default loaded with the last day historical data from the selected source. A selector
is used to chose time period for the historical data. A drop down menu allow the source
to be changed. When changing the selected source, a get request to the controller will be
sent including source id and selected time period, which allow the selected time period to
be saved between the requests. The table containing source details will be populated by
the razor engine iterating through the associated parameters included in the model.

ź.Ŷ.Ŷ Analyࢢc

The analytic web page is based on JavaScript. Initially, the razor engine populates the
selector containing all the sources, while the associated parameters are loaded into a

54

7.3 Website

JavaScript array. After the view is generated, JavaScript will populate the selector con-
taining the parameters. This also happens when the selected source changes. Two date
time selectors are used in order to select a time span [44]. A add button is used to add
parameters and time span to a JavaScript array. In addition, for each added parameter,
JavaScript will add a row to a table containing associated information. The table also
include a remove button, which would remove the parameter both from the table and
from the array. Furthermore, Ajax is used to load measurements for the selected para-
meters. This is done by converting the array to a JSON string and add it as payload to
the Ajax request. The JSON string is then decoded on the server before it will query the
database for the selected measurements and return the data as JSON, which then is used
to populate the plot.

A second analytic page is used to enable side by side plotting. Most of the same imple-
mentations are used as shown above beside the date time picker. It is possible to choose
week, month or year as time period, were JavaScript will dynamically update the date
time pickers to allow valid date formats. jQuery UI is used as date time picker [45]. A
plugin for allowing week selections was also used [46]. The date format is indicated as a
number in the array which is converted to JSON when sending the request to the server.
The date time format on the returned measurements are moved to fit into one specific
week, month or year depending on the selected time span option.

ź.Ŷ.ŷ Report Generaࢢon

The report generation web page use some of the same implementation as the analytic web
page regarding JavaScript and setup. However, it is only possible to select sources, and
years as time periods. The report is generated using HTML, which means that Ajax cant
be used. Instead, the JavaScript array which contain the source and date selection will
be posted using an ordinary post submitting. This is done by converting the array to a
JSON string which is then inserted into a hidden HTML input field. The input field is
then submitted to the controller, which then decode the string and query the database.
All measurements within a month is then scaled down into one average measurement in
order to get a readable plot. Google chart is used for plotting [19] Min, max and average
values are also calculated.

55

56

Ż Mobile App - Implementaࢢon

This chapter will cover the implementation of the mobile app. It was decided to only
target the Android platform, due to the work load to implement apps in both iOS and
Android. Xamarin.Android was chosen as framework [35]. Visual Studio 2017 was used
as IDE.

Ż.Ŵ Overview

Android uses AXML for drawing user interface. So called activities contain all the C#
code, which can utilize the AXML layout. The app is built up using three different
activities.

• Log in
• Register User
• Main activity

The main activity contains all the functionality for accessing data from the server. When
logged in, the users can navigate through different sub pages under the main activity
containing the different functionalities. These sub pages are implemented as fragments,
which contain relevant code functionality. The different fragments are linked to corres-
ponding AXML layouts. As the user navigates to another fragment the main activity will
replace the current fragment with the new fragment.

A simple logic overview can be seen in figure 8.1 for how the mobile app works.

Ż.ŵ Communicaࢢons with Server

Communication with the server happens using the HTTP protocol. As mentioned in
chapter 7, the data flowing between the server and app uses JSON formatted strings.
The NuGet package ”Newtonsoft.Json” is used to serialize and deserialize JSON formatted
data. The deserialize method will format the received JSON string into an object. In
order to do this a class definition of the target object must be defined. As both the server

57

8 Mobile App - Implementation

Figure 8.1: Android App - Logic Overview

and mobile app are programmed in C#, it’s possible to just copy the class definitions
from the server source code into the mobile app source code.

The NuGet package ”System.Net.Http” are used to send data by the HTTP protocol.

Ż.ŵ.Ŵ Authorizaࢢon and Authenࢢcaࢢon

As mentioned in chapter 7, the mobile app is using JWT Token bearer as authentication
and authorization. When the user is authenticated, the server will create an encrypted

58

8.3 User Interface and functionality

JWT token, which then will be saved locally on the mobile app. This token needs to be
sent on each request to the server in order to get access to the data.

Ż.ŵ.ŵ Push Noࢢficaࢢons

Push notification is implemented by using the NuGets ”Xamarin.Firebase.Messaging” and
”Xamarin.GooglePlayServices.Base”. The mobile app requires Google Play Service to be
installed in order to receive push notifications. Each Android device has an unique token
for each app, and is given by the server managing the FCM service. This unique token
must be forwarded to the server as it is needed for sending push notifications. The token
is updated at a regular basis, so a method for detecting changes was implemented. Each
time the app is forwarding a new token to the server, a local copy will also be saved on
the device. When the app starts, or the user logs in, it will ask the FCM service for the
current token. If this token differs from the local copy, it will forward the new token to
the server. In this way the server always has an updated token.

Ż.Ŷ User Interface and funcࢢonality

The user interface uses a library called Android Support Libraries, which is used to draw
the navigation menu and toolbar [47]. The mobile app has five pages containing all its
functionality.

• Dashboard
Will request dashboard data from the server. As a mobile screen is small it will not
load any historical data, only the last measurements, time stamp and status.

• Trending
This page will load more details about the chosen source, like status intervals, license
data and information about the source. Like the website it will load historical data
in order to get an understanding of trending.

• Notifications
Will load configuration from the server regarding push notifications. New configur-
ations will be sent to the server at once when the user make any changes.

• Log in
Provides the log in functionalities. When the user is authenticated, the server will
return a new JWT Bearer token which will be saved locally on the device. The use
can navigate to the register new user page.

• Register new user
The user must enter user name, email and password, where the password must be
confirmed twice to be able to create a new user. Only valid information is accepted,

59

8 Mobile App - Implementation

like valid email and valid password. The password must contain 8 chars, minimum
one number and one upper case character. This will be checked on the server.

Dedicated classes are taking care of the communication with the server, which increases
readability and maintenance.

Ż.Ŷ.Ŵ Ploࢰng

OxyPlot is used for plotting, which is a cross platform library released under to MIT
license [17] [48].

60

ż Services - Implementaࢢon

This chapter will cover implementation of all the services running in the background at
fixed time intervals. They are not tied directly to the website or the mobile app, but
rather read and write to the database only. It was decided to use Azure Function since
they can target the open source .NET Core. [49].

ż.Ŵ Overview

There are three tasks that need to be performed as services.

• Fetch External Data
Will get data from external APIs and copy them into the database.

• Status Updates and Push Notifications
Will update statuses for all the source and parameters in the database according
to the predefined limits in the database. If status changes has occurred, push
notifications will be sent out to all subscribing users.

• Update Buffer Table
The buffer table will only store measurements from the last month. The service will
put any new measurements into the buffer table, and deleting old ones.

An overview can be seen in figure 9.1, which also indicates how the services run when
Azure Function is triggered. The individual services will be explained more in detail in the
sections below. The business logic and database logic was separated in order to increase
readability and maintenance.

61

9 Services - Implementation

Figure 9.1: Services Overview

All the functionality is written as C# classes which makes it more suitable to use them in
multiple .NET applications. They were first written in a .NET CORE console application
for local development and testing. Figure 9.2 shows how the Azure Function was imple-
mented and use the C# classes. ”0 20 * * * *” means how often the function will trigger,
which is called a CRON expression [50]. In this case the timer will trigger 20 minutes
past every hour due to that NULI’s API will be updated 10-20 minutes past every hour.

62

9.2 Fetch External Data

1 pub l i c s t a t i c c l a s s Se rv i c eCo l l e c tExte rna lData
2 {
3 [FunctionName (” Se rv i c eCo l l e c tExte rna lData ”)]
4 pub l i c s t a t i c void Run ([TimerTrigger (”0 20 ∗ ∗ ∗ ∗”)] TimerInfo

myTimer , TraceWriter l og)
5 {
6 l og . In f o (\ $”C# Timer t r i g g e r func t i on executed at : {DateTime .

Now}”) ;
7 ApiExternalDataHandler ApiWorker = new ApiExternalDataHandler ()

;
8 ApiWorker . Run() ;
9 UpdateStatusHandler statusWorker = new UpdateStatusHandler () ;

10 statusWorker . Run() ;
11 DataBufferHandler dataBufferWorker = new DataBufferHandler () ;
12 dataBufferWorker . Run() ;
13 }
14 }

Figure 9.2: Azure Function

ż.ŵ Fetch External Data

The database was designed to store all the information used to request the external APIs
for data. This means that no information is hard coded, which makes it possible to
dynamically add API calls for relevant sources.

Implementation of the database design and code was inspired by how NILU’s API works,
which can return the data formatted as JSON strings [4][51]. According to NULI API
documentation it has two relevant methods for returning data.

• Up to date data
Return data within the three last hours.

• Historical data
Return historical data from within a time interval which need to be defined in the
query.

It is not possible to retrieve historical data when querying the up to date method. How-
ever, data after commissioning will of course be saved. Requesting the API every hour,
which returns data from within the last three hours, means that some of the data may
be redundant. To make sure that no redundant data is stored into the database, no data
older then newest data point will be saved.

The API can return data from multiple stations at once. This means only one query is
needed to request all the data within the three latest hours. The table APISERVICE in
the database is used to hold configuration used for querying.

63

9 Services - Implementation

Furthermore, the API for returning historical data can also return the newest data. Due
to this fact, it is possible to use this API method for collecting both historical and newest
data. However, only one parameter can be selected, which means that each parameter
needs a dedicated query. Therefore, each parameter needs one row in the APISERVICE
table. As the API needs a time interval for querying, the configuration table APICON-
FIGTIMECON is used to hold information about the time interval. It has two columns,
where one holds the time for the last relevant record in the database. The historical API
has a 6 month limitation for the time interval in the query, so the other column is used
to configure this length. When building the query the last recorded time stamp will be
used as start date, and the column holding the interval length will be added to the start
date and set as end date. When using this configuration the query string saved in the
APISERVICE must contain ”{Config.dateStart}” and ”{Config.dateEnd}”.

Figure 9.3 shows an overview of the logic for fetching data from external sources. First all
configurations will be loaded from the database, and then used to query the API. Section
9.2.1 explains more about how the code is accessing the relevant data.

Figure 9.3: Flow diagram for fetching external data

64

9.2 Fetch External Data

ż.ŵ.Ŵ Working with JSON data

Figure 9.4 shows a JSON string results when using an example query.

1 Query : ” https : // api . n i l u . no/aq/ h i s t o r i c a l /NO2? fromtime =2018.02.24 23:00&
tot ime =2018.02.25 01:00& areas=Grenland&s t a t i o n s=Sve r r e sga t e ”

2 Result :
3 {
4 ” zone ” : ”Øst og Sør landet ” ,
5 ” mun i c ipa l i t y ” : ” Grenland ” ,
6 ” area ” : ” Grenland ” ,
7 ” s t a t i o n ” : ” Sve r r e sga t e ” ,
8 ” e o i ” : ”NO0106A” ,
9 ”component” : ”NO2” ,

10 ” l a t i t u d e ” : 59 .13812 ,
11 ” l ong i tude ” : 9 .65212 ,
12 ” va lue s ” : [
13 {
14 ” fromTime” : ”2018−02−24T23 :00 :00+01 :00 ” ,
15 ”toTime” : ”2018−02−25T00 :00 :00+01 :00 ” ,
16 ” value ” : 18 .2448174081 ,
17 ” un i t ” : ”µg/m³” ,
18 ” index ” : 1 ,
19 ” c o l o r ” : ”6 ee86e ”
20 } ,
21 {
22 ” fromTime” : ”2018−02−25T00 :00 :00+01 :00 ” ,
23 ”toTime” : ”2018−02−25T01 :00 :00+01 :00 ” ,
24 ” value ” : 14 .6143858682 ,
25 ” un i t ” : ”µg/m³” ,
26 ” index ” : 1 ,
27 ” c o l o r ” : ”6 ee86e ”
28 }
29]
30 }

Figure 9.4: Json data from NILU’s API

To be able to read and iterate through JSON strings the nuget package Newtonsoft.Json
was installed. Figure 9.5 shows how the JSON string in figure 9.4 is converted to a JSON
object and then iterated through. Note how the path names shown in figure 9.4 is used
when accessing the data in the JSON object. In this case the JSON will hold two items
in an array called ”values”. Inside this array measurement and time stamp can be found
with the corresponding names ”value” and ”toTime”. These names need to be saved in
the database as configurations in order to know what data to pick.

65

9 Services - Implementation

1 JObject j sonObject = JObject . Parse (j s o n S t r i n g) ;
2

3 i n t l ength = data [” va lue s ”] . Count () ;
4 i f (l ength != 0)
5 {
6 f o r (i n t i = 0 ; i < length ; i++)
7 {
8 s t r i n g value = (s t r i n g) data [” va lue s ”] [i] [” va lue ”] ;
9 DateTime timeStamp = (DateTime) data [” va lue s ”] [i] [” toTime

”] ;
10 }
11 }

Figure 9.5: Converting JSON string to JSON Object

ż.Ŷ Status Updates and Push Noࢢficaࢢons

Push notifications is tied to status changes. When calculating new statuses, the old
ones will be kept in memory in order to detect changes. These changes will trigger push
notifications. An overview for the logic is shown in figure 9.6.

Figure 9.6: Flow diagram for updating statuses and sending push notifications

66

9.3 Status Updates and Push Notifications

ż.Ŷ.Ŵ Status updates

Each parameter has corresponding configurations tables holding information about the
different status intervals, which tell the user how bad or good the values are. It will
load all the sources and corresponding parameters and status intervals, and then find the
relevant status interval for each parameter based on the last measured value. Each status
is given with a number indicating severity, where lower is good and higher is bad. The
parameter that holds the status with the highest severity will set the status for the source.
Furthermore, if the last measurement is older then 5 hours, it will be indicated as no data
and stored as null in the database. Moreover, it will not influence the source status unless
all parameter statuses are indicating no data.

The table PARAMINTERVAL holds all the status intervals for each parameter, which
is linked to PARAMINTERVALSTATUS that holds information about the severity. In
case of air pollution, one row in PARAMINTERVAL can hold information about meas-
urement values that indicates low air pollution, which is then linked to PARAMINTER-
VALSTATUS that holds the text and color indicating low air pollution. PARAMINTER-
VALSTATUS is grouped together by the table PARAMINTERVALGROUP.

ż.Ŷ.ŵ Push Noࢢficaࢢons

Each register user has their own table that holds information about their device token,
which will be updated each time the user logs into the app. To be able to send push
notifications through the mobile app, the app must be registered within the service Google
Firebase, and be set up with Firebase Cloud Messaging. [37]. Figure 9.7 shows the
information needed to send push notifications using Google Firebase Cloud Messaging in
addition the device tokens.

Figure 9.7: Firebase Cloud Messaging

67

9 Services - Implementation

If any status changes have occurred, all subscribing users and corresponding device tokens
will be fetched from the database, which will then be sent to Firebase Cloud Messaging.
This happens using ordinary http post requests. The concept can be seen in figure 9.8.

1 WebRequest tRequest = WebRequest . Create (” https : // fcm . go o g l e a p i s . com/fcm/
send ”) ;

2 var app l i ca t i on ID = ” Server key”
3 var sender Id = ” Sender ID” ;
4 tRequest . Method = ” post ” ;
5 tRequest . ContentType = ” a p p l i c a t i o n / j son ” ;
6

7 var dataMessage = new
8 {
9 to = ” Device Token” ,

10 n o t i f i c a t i o n = new
11 {
12 body = ”Body” ,
13 sound = ” d e f a u l t ” ,
14 t i t l e = ” T i t l e ” ,
15 } ,
16 p r i o r i t y = ” high ”
17 } ;
18

19 var j son = JsonConvert . S e r i a l i z e O b j e c t (dataMessage) ;
20 Byte [] byteArray = Encoding .UTF8. GetBytes (j son) ;
21 tRequest . Headers . Add(s t r i n g . Format (” Author i zat ion : key={0}” ,

app l i ca t i on ID)) ;
22 tRequest . Headers . Add(s t r i n g . Format (” Sender : id ={0}” , sender Id))

;
23 tRequest . ContentLength = byteArray . Length ;
24

25 // Code f o r sending the reque s t i s removed due to r e a d a b i l i t y .

Figure 9.8: Sending data to FireBase Cloud Messaing

68

9.4 Update Buffer Table

ż.ŷ Update Buffer Table

Database is fast, even with large tables, but the performance will be slower as the tables
grow. Dashboard and trending functionality is loaded frequently, and only needs the
newest measurements from the database. Therefore, it did make sense to implement a
buffer table only containing the newest measurements.

The buffer table will hold measurements from the last month. Figure 9.9 shows the logic
for updating the buffer table.

Figure 9.9: Updating buffer table

69

70

Ŵų Results

This chapter will cover the results from the website, mobile app, services and database.

Ŵų.Ŵ Website

Each page on the web page will be illustrated with images presenting the functionality in
use. The website contains an ”About” and a ”Get App” page, but will not be illustrated
with images. The ”Get App” gives the users a download link and a simple explanation of
the app. The ”About” page will tell the user some simple information about the system.

Ŵų.Ŵ.Ŵ Dashboard

The dashboard presents the most relevant and important information, such as parameters
and last measured values. Each source includes a plot showing trending data for the last
day. Status is given focus as it might be the most important indication for most of the
users. Furthermore, status for each parameter is also shown by giving color to the last
value field. It can be clearly seen that each parameter uses the same color, which increases
readability of the plot. By clicking on the details link, the user will be forwarded to the
trending web page showing the relevant source. Figure 10.1 shows the dashboard.

71

10 Results

Figure 10.1: Dashboard

By scrolling down on the dashboard a map and more details about the sources can be
seen. Each source is represented on the map by the color indicating the status. The
sources on the map are clickable, where a pop up will include the source name, status and
a link forwarding to the trending web page. A table is representing more details about all
the sources, potentially including the sources which are not displayed on the dashboard.
Figure 10.2 shows the map and the table.

72

10.1 Website

Figure 10.2: More details on dashboard

By clicking on the parameter name in the table, a pop up containing the information about
the parameter will be displayed as shown in figure 10.3. From the pop up it is possible
to navigate to a web page containing information about all the parameters within the
system, which can be seen in figure 10.4.

73

10 Results

Figure 10.3: Parameter description

Figure 10.4: All parameter descriptions

74

10.1 Website

Ŵų.Ŵ.ŵ Trending

The trending web page gives the user more information about trending data and details.
Since only one source is plotted, the plot is made bigger, which makes it easier to read. It
can show historical data from the last day, last three days, last week and last month. It
is not possible to choose other time periods. All the sources are available through a drop
down menu. Figure 10.5 shows the plot and the different options for changing source and
time period.

Figure 10.5: Trending

75

10 Results

Furthermore, the trending page contains a table with details about the associated para-
meters like unit, last value, status and the different status intervals. The status intervals
are indicated by values and associated colors. License information and about source are
also displayed. The details can be seen in figure 10.6.

Figure 10.6: Trending - more details

76

10.1 Website

Ŵų.Ŵ.Ŷ Data Analyࢢcs

The analytic functionality allows the user to combine any data from any source together
on the same plot, which happens without the page refreshing. This allows the user to
investigate and compare different parameters against each other. If plotting data from a
large time period it becomes difficult to read the plot. There is no method for scaling the
data. An image from the web page can be seen in figure 10.7.

Figure 10.7: Data analytic

77

10 Results

Ŵų.Ŵ.ŷ Data Analyࢢcs - Compare Periods

The data analytic functionalities given in section 10.1.3 will not be able to lay over different
periods in the plot. Therefore, a second data analytic page was made dedicated for
comparing weeks, months and years. For example, when selecting weeks, it will scale all
the time stamps to fit into one week. It is possible to plot different weeks from the same
parameter side by side. The web page can be seen in appendix D.

Ŵų.Ŵ.Ÿ Report Generaࢢon

The report generation page allows the user to generate reports based on selected sources
and year span. Instead of plotting each measurement, all measurements within one month
will be combined into one measurement were the average value is used. Max, min and
average value for each parameter will be calculated both for yearly and the whole time
span. The setup page for report generation can be seen in figure 10.8. An example report
was generated and can be found in appendix E.

Figure 10.8: Report generation - setup

78

10.2 Mobile App

Ŵų.ŵ Mobile App

The results from the mobile app will be illustrated with images from the different pages.
All the functionalities are tested and work as intended.

Ŵų.ŵ.Ŵ Dashboard

The dashboard page and the navigation menu can be seen in figure 10.9. Each source
is presented in a list, where a tap on the element containing the source will redirect the
trending page. The status for the sources is indicated with text and color. In addition,
status for each parameter is also shown. Since the dashboard does not feature plotting,
time stamp for the last values are included.

Figure 10.9: Dashboard and navigation

79

10 Results

Ŵų.ŵ.ŵ Trending

The trending page contains the same details as the website does. The difference is mainly
the screen size. Two drop down menus are used to change source and select last time
period for the historical data. The plot supports scrolling, but cause some problem as the
plot itself is inside a list which also is scrollable. By scrolling down more details about the
source can be seen like status intervals, unit, about source and license data. The trending
page is shown in figure 10.10.

Figure 10.10: Trending

80

10.2 Mobile App

Ŵų.ŵ.Ŷ Log In / Register new user

The log in and register pages works as intended. If a user is not logged in he/she will
be redirected to the log in page. Furthermore, if the user has no associated account it is
possible to navigate to the register new user page, were the user can enter valid email,
user name and password. The user will either get a message indicating success or fault
when signing up. If the server detects invalid password or email, or that the email or user
name is already taken, it will return an error message indicating the error. The log in
and register pages can be seen in figure 10.11.

Figure 10.11: Log in/register

81

10 Results

Ŵų.ŵ.ŷ Push Noࢢficaࢢons

The push notifications work as intended, but the functionalities for disabling push within
a time period was not implemented on the app. The app will receive one push notification
for each source that changes status. If system somehow stops receiving measurements for
a source, the status will be indicated as ”No Data” after five hours. This status change
will generate a push notification indicating no data. If the source starts receiving data
again, this also will trigger a push notification. Note that this will only happen if all
the parameters within the source are indicated as ”No Data”. Figure 10.12 shows the
configuration and when the app receives a push notification. The figure also shows a
smart watch receiving push notification from an Android phone, which is a fine feature
for mobile apps.

Figure 10.12: Push notifications

82

10.3 Services

Ŵų.Ŷ Services

The services are successfully running at Azure, and no failure has been detected till this
point while running there. The measurements within the system has been cross checked
against luftkvalitet.info many times, and no mismatch was detected[2]. Figure 10.13 shows
the console application when the services are running locally. After gathering data from
2015 to 2018 for the sources available in Grenland area, the database storage usage was
24 MB. Moreover, the implementation of buffer table improved the loading time of the
dashboard.

Figure 10.13: Services running locally

83

84

ŴŴ Discussion

Track changes is off As mentioned in chapter 5, RAP was chosen as software development
method, which gave the advantage of continuous improvements based on feedback during
development.

ŴŴ.Ŵ Website

The functionality for logging in and registering user are implemented, but hidden as no
functionality is linked to any user. As mentioned in section 3.2, it was planned that
the users should be able to configure some of the functionality, but due to the work
load and given time this was not implemented. Moreover, administrative user interface
functionality intended to allow creating/editing source, parameter, API configurations etc
was not implemented. However, the database design allows this to be implemented later
on.

The dashboard web page gives the users a quick overview of the statuses and trending for
the last day. The fields indicating the status can easily be seen for each source. Which
sources that should be presented on the dashboard is configurable in the database, but
changes apply to all users, which was planned to be a personal configuration for logged in
users. Moreover, the map gives users quick information about the location of the sources,
which is indicated with colors in order to give a geographical overview about the statuses.
By clicking on the detail link on the dashboard, map and details table, the users will be
redirected to the trending site where the selected source is preloaded.

The trending web page shows trending data for the selected source, and corresponding
details about the source and associated parameters. Furthermore, the status intervals are
displayed as text for each parameter in the parameters table. This could have been solved
differently, for example by plotting them in the plot. Each parameter may have many
limits, so this may lead to many lines in the plot. Logic could have been added to only
draw the closest status limits. This could have been added as an option that could been
activated when needed.

The analytic functionalities allow users to compare parameters against each others. Due
to readability when reading plots with large data sets, it was planned to implement scaling
logic as an option, but given the time it was not prioritized. Scaling could be done in

85

11 Discussion

both the database and in back-end code. The data could have been scaled based on days,
weeks or month. This could have been added as an option where the user can select the
desired scaling option. Moreover, it was also planned to implement an option for logged
in users to save any setup for choosing parameters, but this was not implemented. This
would have been useful for users frequently investigating the same parameters.

As planned, report generation was implemented to be used as a basis for decision making.
It was originally planned to generate reports as pdf files, but due to time they are now
generated as HTML, which the user can print as pdf since most browsers support this.
The reports will be generated by scaling the data sets based on months. However, more
options for scaling should have been implemented. Both the analytic and report genera-
tion functionalities were planned to be restricted to logged in users in case of shortage in
server resources, but are instead made available to the public. The database and solution
design allow for restriction in usage so it is possible to implement this later on.

Figure 11.1 shows a plot extracted from the generated report given in appendix E. The
plot clearly shows trends where the NO2 levels are lowest at summer time and highest
during the winter. This correspond with the known facts that NO2 actually is higher
during the winter [52]. The detection of this trending indicates the solution could be used
by government or companies as a base for taking measures for reducing emissions.

Figure 11.1: Report generation - detecting trending

ŴŴ.ŵ Mobile App

The mobile app works as intended and provides some of the functionalities as planned
in section 3.3. The design was not prioritized. Disabling push notifications within a
time period is supported in the database, but was not implemented in the mobile app.
However, the Android operating system itself offers some functionalities for disabling push

86

11.3 Services and Database

notifications from the installed apps. Moreover, if subscribing on multiple sources, each
source will generate one push notification. It might be a better solution to combine all
the sources into one notification. However, newer versions of Android will group push
notifications automatically.

Implementing the mobile app only in Android was necessary due to the available hardware
and time, but the drawback is any potential limitation in usage and feedback as many use
iPhone. However, it is a normal approach to develop an app to only one platform first,
and then later on add support for other platforms.

There is also a bug in the trending page while scrolling over the plot. This is because both
of them are scrollable. Fixing this bug was not in focus due to time. However, a possible
solution might be to override the method that performs the scrolling functionality for
the list. If detecting scrolling over the plot, the override method must disable scrolling
for the list. If solving the problem as explained, it is important that the plot does not
fill the whole screen as it would be impossible to scroll down the list due to the override
method.

ŴŴ.Ŷ Services and Database

The service for collecting data through external APIs works when it is querying data
from NILU. However, it might not work against other APIs depending on how the data is
returned. The database holding the configuration only allows a specific JSON hierarchy
structure to be returned in order to convert the string to an iterable object. To over-
come the problem, the database must be able to support dynamically added hierarchy
structure. This was not implemented due time limitations. See section 9.2.1 for more
information about how the service decodes the JSON strings. Furthermore, the service
only supports JSON formatted string, but not XML. Yr, for instance, return data as
XML. The logic for the service does not need to support XML, as it is possible to convert
received XML to JSON. The database as a column indicating the format, but conversion
was not implemented in the service as it would be best to prioritize dynamic hierarchy
structure first.

The database queries during report generation seems to be slow. The query might need
some optimization. If choosing a source and a time span, for instance 2015 to 2018, each
year for each parameter will be one query, were the database must search for relevant data
in the table containing the measurements. The database is efficient, so one query itself
might not take long time, but combined the delay would be noticeable long. A solution
could be to expand the database with tables containing prescaled measurement, which
could be calculated by an service at fixed intervals. This would would not optimize the
queries itself, but will give a massive performance improvement as the data already is
scaled and the tables contain fewer rows.

87

88

Ŵŵ Further Work

Suggestion for further work will be covered in this chapter. Minor suggestion will not be
emphasized or suggested.

Ŵŵ.Ŵ Website

Options for better configurations for logged in users is a good suggestion for future work.
The users should be able to choose which source they want be displayed on the dashboard.
The ability to save setup for the analytic and report generation would make the website
more user friendly.

Better scaling options for the analytic and report generation web pages would increase
the usefulness of these features as it might be easier to read to plots and detect trends.

Ŵŵ.ŵ Mobile App

Expanding the mobile app to work with iOS will increase the potentially usage.

Ŵŵ.Ŷ Services and Database

The service for gathering data through external APIs should allow dynamically added
hierarchy structure for the JSON data. Implementation of XML to JSON conversion
would also be beneficial. These two suggestion would allow the service to target a wider
range of APIs.

Expand the database to include tables storing statistics about the measurements can be
useful. For example, a table could be added to allow monthly storage containing min, max
and average values. As the database design is now, statistics must be calculated for each
request. Moreover, the database could be expanded with tables for storing scaled data,
which could be updated at fixed intervals. This would lead to a massive improvement in
performance of loading scaled data as the data is already scaled.

89

90

ŴŶ Conclusion

Increased focus on environmental health by government, companies and the public laid the
basis for this project. Different services providing environmental data already exist today,
but an important aim of this thesis is to show that such kind of data can be collected and
provided from one single service. People interested in their local environment, or people
who could have serious health reactions to bad air quality, asthmatic people etc., can
simply install an app and get push notifications if e.g. the pollution levels in their area
reach certain limits. This eliminates the need of actively checking different web pages and
services to get a good overview over the current status of pollution levels, which increases
user convenience, and potentially health safety.

From a technical point of view, the website was successfully developed and deployed to
Microsoft Azure. The mobile app was made available on the website for downloading.
Furthermore, the app has been tested and seems to work as intended. Subscribing/un-
subscribing on push notifications seem to work.

The service which collects data from the NILU API seems to work as intended, but some
downtime have been registered at the external API.

This project has shown that it is possible to create and run a single service for collecting
environmental data and pushing related notifications to users, and also to make it run
relatively stable. If there were to be more interest from the government, companies or
the public in making environmental data more available, it can certainly be done, and
probably expanded upon further in terms of finding new ways to make use of these data.

91

92

Bibliography

[1] NILU, Nilu, Accessed 10.05.2018. [Online]. Available: https://www.nilu.no/.
[2] ——, Luftkvalitet.info, Accessed 10.05.2018. [Online]. Available: http : / / www .

luftkvalitet.info/home.aspx.
[3] Miljødirektoratet, Norske utslipp, Accessed 10.05.2018. [Online]. Available: http:

//www.norskeutslipp.no/.
[4] Nilu, Nilu api docs, Accessed 08.05.2018. [Online]. Available: https://api.nilu.

no/docs/.
[5] EPA, Basic information about no2, Accessed 08.05.2018. [Online]. Available: https:

//www.epa.gov/no2-pollution/basic-information-about-no2.
[6] irceline, What is pm10 and pm2.5?, Accessed 08.05.2018. [Online]. Available: http:

//www.irceline.be/en/documentation/faq/what-is-pm10-and-pm2.5.
[7] greenfacts.org, What is ozone (o3), Accessed 08.05.2018. [Online]. Available: https:

//www.greenfacts.org/en/ozone-o3/l-3/1-presentation.htm.
[8] globalccsinstitute.com, What is carbon dioxide (co2)?, Accessed 08.05.2018. [On-

line]. Available: https://hub.globalccsinstitute.com/publications/what-
happens-when-co2-stored-underground-qa-ieaghg-weyburn-midale-co2-
monitoring-and-storage-project/1-what-carbon-dioxide-co2.

[9] Microsoft, Choosing between asp.net and asp.net core, Accessed 21.04.2018. [Online].
Available: https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-
framework?view=aspnetcore-2.1.

[10] T. P. Group, Php, Accessed 21.04.2018. [Online]. Available: http://php.net/.
[11] Microsoft, Php open source, Accessed 21.04.2018. [Online]. Available: http://php.

net/license/index.php.
[12] Google, Android studio, Accessed 21.04.2018. [Online]. Available: https://developer.

android.com/studio/intro/index.html.
[13] Apple, Xcode, Accessed 21.04.2018. [Online]. Available: https://developer.apple.

com/xcode/.
[14] X. Inc, Xamarin, Accessed 24.04.2018. [Online]. Available: https://www.xamarin.

com/.

93

https://www.nilu.no/
http://www.luftkvalitet.info/home.aspx
http://www.luftkvalitet.info/home.aspx
http://www.norskeutslipp.no/
http://www.norskeutslipp.no/
https://api.nilu.no/docs/
https://api.nilu.no/docs/
https://www.epa.gov/no2-pollution/basic-information-about-no2
https://www.epa.gov/no2-pollution/basic-information-about-no2
http://www.irceline.be/en/documentation/faq/what-is-pm10-and-pm2.5
http://www.irceline.be/en/documentation/faq/what-is-pm10-and-pm2.5
https://www.greenfacts.org/en/ozone-o3/l-3/1-presentation.htm
https://www.greenfacts.org/en/ozone-o3/l-3/1-presentation.htm
https://hub.globalccsinstitute.com/publications/what-happens-when-co2-stored-underground-qa-ieaghg-weyburn-midale-co2-monitoring-and-storage-project/1-what-carbon-dioxide-co2
https://hub.globalccsinstitute.com/publications/what-happens-when-co2-stored-underground-qa-ieaghg-weyburn-midale-co2-monitoring-and-storage-project/1-what-carbon-dioxide-co2
https://hub.globalccsinstitute.com/publications/what-happens-when-co2-stored-underground-qa-ieaghg-weyburn-midale-co2-monitoring-and-storage-project/1-what-carbon-dioxide-co2
https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-framework?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-framework?view=aspnetcore-2.1
http://php.net/
http://php.net/license/index.php
http://php.net/license/index.php
https://developer.android.com/studio/intro/index.html
https://developer.android.com/studio/intro/index.html
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://www.xamarin.com/
https://www.xamarin.com/

Bibliography

[15] Microsoft, Microsoft sql server, Accessed 21.04.2018. [Online]. Available: https:
//docs.microsoft.com/en- us/sql/sql- server/sql- server- technical-
documentation?view=sql-server-2017.

[16] O. Corporation, Mysql, Accessed 21.04.2018. [Online]. Available: https://dev.
mysql.com/downloads/.

[17] opensource.org, The mit license, Accessed 08.05.2018. [Online]. Available: https:
//opensource.org/licenses/MIT.

[18] Chart.js, Chart.js, Accessed 08.05.2018. [Online]. Available: https://www.chartjs.
org/.

[19] Google, Google chart, Accessed 08.05.2018. [Online]. Available: https://developers.
google.com/chart/.

[20] Rotativa, Rotativa.aspnetcore, Accessed 08.05.2018. [Online]. Available: https://
github.com/webgio/Rotativa.AspNetCore.

[21] V. Software, Http api to convert html in pdf files, Accessed 08.05.2018. [Online].
Available: https://rotativahq.com.

[22] Google, Firebase cloud messaging, Accessed 08.05.2018. [Online]. Available: https:
//firebase.google.com/products/cloud-messaging/.

[23] Apple, Apns overview, Accessed 08.05.2018. [Online]. Available: https://developer.
apple.com/library/content/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/APNSOverview.html.

[24] Microsoft, Sending push notifications from azure mobile apps, Accessed 08.05.2018.
[Online]. Available: https://developer.xamarin.com/guides/xamarin-forms/
cloud-services/push-notifications/azure/.

[25] apache.org, Apache license, Accessed 08.05.2018. [Online]. Available: http://www.
apache.org/licenses/LICENSE-2.0.

[26] J. Dick, Pushsharp v4.0, Accessed 08.05.2018. [Online]. Available: https://github.
com/Redth/PushSharp.

[27] Microsoft, Host asp.net core on windows with iis, Accessed 08.05.2018. [Online].
Available: https://docs.microsoft.com/en- us/aspnet/core/host- and-
deploy/iis/?tabs=aspnetcore2x&view=aspnetcore-2.1.

[28] ——, Host asp.net core on linux with nginx, Accessed 08.05.2018. [Online]. Available:
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-
nginx?tabs=aspnetcore2x&view=aspnetcore-2.1.

[29] ——, Microsoft azure, Accessed 08.05.2018. [Online]. Available: https://azure.
microsoft.com/nb-no/.

[30] ——, Pay-as-you-go, Accessed 08.05.2018. [Online]. Available: https://azure.
microsoft.com/nb-no/offers/ms-azr-0003p/.

94

https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.chartjs.org/
https://www.chartjs.org/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://github.com/webgio/Rotativa.AspNetCore
https://github.com/webgio/Rotativa.AspNetCore
https://rotativahq.com
https://firebase.google.com/products/cloud-messaging/
https://firebase.google.com/products/cloud-messaging/
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.xamarin.com/guides/xamarin-forms/cloud-services/push-notifications/azure/
https://developer.xamarin.com/guides/xamarin-forms/cloud-services/push-notifications/azure/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/Redth/PushSharp
https://github.com/Redth/PushSharp
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?tabs=aspnetcore2x&view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?tabs=aspnetcore2x&view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx?tabs=aspnetcore2x&view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx?tabs=aspnetcore2x&view=aspnetcore-2.1
https://azure.microsoft.com/nb-no/
https://azure.microsoft.com/nb-no/
https://azure.microsoft.com/nb-no/offers/ms-azr-0003p/
https://azure.microsoft.com/nb-no/offers/ms-azr-0003p/

Bibliography

[31] ——, Asp.net mvc overview, Accessed 08.05.2018. [Online]. Available: https://
msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx.

[32] N.-O. Skeie, Course sce2006 industrial information technology (iit), Lecture notes,
Porsgrunn, 2nd Jan. 2017.

[33] Microsoft, An introduction to nuget, Accessed 13.05.2018. [Online]. Available: https:
//docs.microsoft.com/en-us/nuget/what-is-nuget.

[34] Twitter, Bootstrap, Accessed 08.05.2018. [Online]. Available: https://getbootstrap.
com/.

[35] X. Inc, Xamarin, Accessed 24.04.2018. [Online]. Available: https://docs.microsoft.
com/en-us/xamarin/android.

[36] Microsoft, What is .net?, Accessed 25.04.2018. [Online]. Available: https://www.
microsoft.com/net/learn/what-is-dotnet.

[37] Google, Google firebase, Accessed 08.05.2018. [Online]. Available: https://firebase.
google.com/.

[38] erwin, Erwin data modeler, Accessed 08.05.2018. [Online]. Available: https : / /
erwin.com/products/data-modeler/.

[39] Microsoft, Entity framework documentation, Accessed 08.05.2018. [Online]. Avail-
able: https://docs.microsoft.com/en-us/ef/.

[40] ——, Asp.net mvc core 2.0 middleware, Accessed 25.04.2018. [Online]. Available:
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/
?view=aspnetcore-2.1&tabs=aspnetcore2x.

[41] ——, Jwt validation and authorization in asp.net core, Accessed 25.04.2018. [Online].
Available: https://blogs.msdn.microsoft.com/webdev/2017/04/06/jwt-
validation-and-authorization-in-asp-net-core/.

[42] J. Westlin, Apply authorization by default in asp.net core, Accessed 26.04.2018.
[Online]. Available: https://joonasw.net/view/apply-authz-by-default.

[43] jquery.com, Jquery.ajax(), Accessed 13.05.2018. [Online]. Available: http://api.
jquery.com/jquery.ajax/.

[44] gijgo.com, Bootstrap datepicker, Accessed 13.05.2018. [Online]. Available: http :
//gijgo.com/datepicker/example/bootstrap.

[45] jqueryui.com, Datepicker, Accessed 13.05.2018. [Online]. Available: https://jqueryui.
com/datepicker/.

[46] dnviti, Easy week picker widget for jquery ui - weekpicker.js, Accessed 13.05.2018.
[Online]. Available: https://www.jqueryscript.net/time-clock/Easy-Week-
Picker-Widget-For-jQuery-UI-weekPicker-js.html.

[47] X. Inc, V7 appcompat android support library, Accessed 08.05.2018. [Online]. Avail-
able: https://components.xamarin.com/view/xamandroidsupportv7appcompat.

95

https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://getbootstrap.com/
https://getbootstrap.com/
https://docs.microsoft.com/en-us/xamarin/android
https://docs.microsoft.com/en-us/xamarin/android
https://www.microsoft.com/net/learn/what-is-dotnet
https://www.microsoft.com/net/learn/what-is-dotnet
https://firebase.google.com/
https://firebase.google.com/
https://erwin.com/products/data-modeler/
https://erwin.com/products/data-modeler/
https://docs.microsoft.com/en-us/ef/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-2.1&tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-2.1&tabs=aspnetcore2x
https://blogs.msdn.microsoft.com/webdev/2017/04/06/jwt-validation-and-authorization-in-asp-net-core/
https://blogs.msdn.microsoft.com/webdev/2017/04/06/jwt-validation-and-authorization-in-asp-net-core/
https://joonasw.net/view/apply-authz-by-default
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://gijgo.com/datepicker/example/bootstrap
http://gijgo.com/datepicker/example/bootstrap
https://jqueryui.com/datepicker/
https://jqueryui.com/datepicker/
https://www.jqueryscript.net/time-clock/Easy-Week-Picker-Widget-For-jQuery-UI-weekPicker-js.html
https://www.jqueryscript.net/time-clock/Easy-Week-Picker-Widget-For-jQuery-UI-weekPicker-js.html
https://components.xamarin.com/view/xamandroidsupportv7appcompat

Bibliography

[48] oxyplot.org, Oxyplot, Accessed 08.05.2018. [Online]. Available: http://www.oxyplot.
org/.

[49] Microsoft, Azure functions support for .net core, Accessed 07.05.2018. [Online]. Avail-
able: https : / / azure . microsoft . com / en - us / roadmap / azure - functions -
support-for-net-core/.

[50] ——, Cron expressions, Accessed 07.05.2018. [Online]. Available: https://docs.
microsoft.com/en-us/azure/azure-functions/functions-bindings-timer#
cron-expressions.

[51] www.w3schools.com, Json - introduction, Accessed 08.05.2018. [Online]. Available:
https://www.w3schools.com/js/js_json_intro.asp.

[52] MILJØDIREKTORATET, Kulde og tørt vær kan gi helseskadelig luft, Accessed
14.05.2018. [Online]. Available: http://www.miljodirektoratet.no/no/Tema/
Luft/Lokal_luftforurensning/Kulde-og-tort-var-kan-gi-helseskadelig-
luft/.

96

http://www.oxyplot.org/
http://www.oxyplot.org/
https://azure.microsoft.com/en-us/roadmap/azure-functions-support-for-net-core/
https://azure.microsoft.com/en-us/roadmap/azure-functions-support-for-net-core/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer#cron-expressions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer#cron-expressions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer#cron-expressions
https://www.w3schools.com/js/js_json_intro.asp
http://www.miljodirektoratet.no/no/Tema/Luft/Lokal_luftforurensning/Kulde-og-tort-var-kan-gi-helseskadelig-luft/
http://www.miljodirektoratet.no/no/Tema/Luft/Lokal_luftforurensning/Kulde-og-tort-var-kan-gi-helseskadelig-luft/
http://www.miljodirektoratet.no/no/Tema/Luft/Lokal_luftforurensning/Kulde-og-tort-var-kan-gi-helseskadelig-luft/

Appendix A

Project Task Descripࢢon

97

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master’s Thesis

Title: Environmental Public Health Information Management System

Supervisor: Hans-Petter Halvorsen, Nils-Olav Skeie

External Partners: Tel-Tek, Porsgrunn kommune, Sykehuset Telemark

Task Description:

Development and maintenance of infrastructure and data system for gathering, acquiring and

analysis of environmental and public health information data for Porsgrunn and Grenland.

Typical data for acquiring and analyzing are air pollution and air quality, emissions from

industry, emissions from cars, number of cars, etc. Integrate the system with existing

monitoring stations. The system will be important in the development of new industries,

research and development areas.

The thesis includes the following key elements:

• Get an overview of data for acquiring and analysis

• Planning and System Design

• Database modeling, design and implementation

• Web Design and Web Development

• Mobile Development

• API Development

• Monitoring, Analysis, Statistics, and Presentation of Data. Generation of Reports in

connection with analysis and reporting of data to authorities and other contracting

authorities.

• Integration with existing monitoring stations.

• Deployment and Hosting

Task Background: USN has collaborated with Tel-Tek, Porsgrunn kommune, Sykehuset

Telemark for a prototype of such a system. The goal is to develop and establish an operational

system for registering and monitoring of data regarding environmental public health

information.

Student Category: IIA students

Practical Arrangements:

Signatures:

Supervisor (date and signature):

Students (date and signature):

Appendix B

Design Sketches

Figure B.1 shows the dashboard web page. Figure B.2 show the trending web page sketch.
Figure B.3 shows how the app might look like.

Figure B.1: Website Dashboard

99

Appendix B Design Sketches

Figure B.2: Website Graph

Figure B.3: Mobile-App sketches

100

Appendix C

Use Cases

The use cases for the website and mobile app can be seen in figure C.1. Figure C.2 show
the use cases for the services.

Figure C.1: Use case diagram from web site and mobile app

101

Appendix C Use Cases

Figure C.2: Mobile-App Use Cases

102

Appendix D

Data Analyࢢcs - Compare Periods

103

Appendix D Data Analytics - Compare Periods

Figure D.1: Data analytic - compare periods

104

Appendix E

Generated Report by the System

105

	Environmental Public Health Information Management System
	Summary

	Preface
	Contents
	List of Figures
	List of Tables

	Introduction
	Background
	Report Structure

	System Overview
	The need of an Information Management System
	Existing Solutions
	System Description and Available Data
	Available Data - Grenland Area

	Planned System Behavior
	Requirements and Specifications
	Website - Planned Behavior
	User Log In and Registration
	Dashboard
	Trending
	Analytic
	Report Generation
	Administrative functionality

	Mobile App - Planned Behavior
	Dashboard
	Trending
	Push Notifications
	Register/Log in

	Technical Analysis
	Needed Requirements
	Frameworks and programming languages
	Web solution - Back-end
	Mobile App

	Database
	Website front-end tools
	Bootstrap
	Charting Library

	Back-End Tools and Services
	Pdf Generation
	Push notifications

	Hosting
	Private hosting
	External hosting
	Cost Estimation

	Scheduling
	Maintenance
	ASP.NET MVC - Theory and Example
	Example

	Development: Methods and Design
	Working Methods
	Frameworks, tools and services
	Database
	Website
	Mobile App
	Services
	Hosting

	Initial Software Design

	Database - Implementation
	Design
	Entity Framework
	LINQ
	Generating C# Models from Database

	Views

	Website - Implementation
	Server side - code patterns
	Interactions between server and clients
	Middleware

	Website
	Dashboard
	Trending
	Analytic
	Report Generation

	Mobile App - Implementation
	Overview
	Communications with Server
	Authorization and Authentication
	Push Notifications

	User Interface and functionality
	Plotting

	Services - Implementation
	Overview
	Fetch External Data
	Working with JSON data

	Status Updates and Push Notifications
	Status updates
	Push Notifications

	Update Buffer Table

	Results
	Website
	Dashboard
	Trending
	Data Analytics
	Data Analytics - Compare Periods
	Report Generation

	Mobile App
	Dashboard
	Trending
	Log In / Register new user
	Push Notifications

	Services

	Discussion
	Website
	Mobile App
	Services and Database

	Further Work
	Website
	Mobile App
	Services and Database

	Conclusion
	Bibliography
	Project Task Description
	Design Sketches
	Use Cases
	Data Analytics - Compare Periods
	Generated Report by the System

